上一篇
Hibiki是什么?一文让你看懂Hibiki的技术原理、主要功能、应用场景HMA是什么?一文让你看懂HMA的技术原理、主要功能、应用场景
HMA概述简介
HMA(Heterogeneous Masked Autoregression)是麻省理工学院、Meta和伊利诺伊大学香槟分校开源的,用在建模机器人动作视频动态的方法。HMA基于异构预训练,用不同机器人实体、领域和任务中的观测和动作序列,结合掩码自回归技术生成视频预测。HMA支持离散和连续两种变体,分别用在快速生成和高保真度生成,处理动作空间的异构性,包括不同的动作频率、维度和动作空间,基于模块化网络架构实现高效的实时交互。HMA在机器人学习中具有广泛的应用前景,包括视频模拟、策略评估、合成数据生成和作为模仿策略使用,在扩展性和实时性方面表现出色。
HMA的功能特色
视频模拟:生成高质量的视频序列,模拟机器人在不同环境中的动作效果,用在虚拟环境中的交互和测试。
策略评估:作为高保真度的模拟器,评估机器人策略的性能,预测策略在真实环境中的表现。
合成数据生成:生成大量的合成数据,增强机器人的训练数据集,提升策略的泛化能力。
模仿策略:直接作为模仿学习的策略,预测机器人在给定观测下的动作。
HMA的技术原理
异构预训练:
数据来源:用来自不同机器人实体、任务和领域的大量观测和动作序列数据进行预训练,涵盖从简单到复杂的动作空间。
动作异构性处理:基于为每个领域设计特定的动作编码器和解码器,将不同动作空间映射到共享的潜在空间中,处理动作频率、维度和动作空间的异构性。
模块化架构:网络架构包括多个动作输入模块(“stem”)和动作输出模块(“head”),及共享的核心时空变换器(“trunk”),支持高效预训练和灵活扩展。
掩码自回归:
掩码目标:在训练时,模型基于掩码自编码目标随机掩码部分标记,并基于未掩码的标记预测掩码部分,学习序列的联合分布。
自回归生成:在推理时,模型逐步取消掩码,生成未来的视频帧和动作序列。既高效又能保持高生成质量。
两种变体:HMA支持离散变体(生成矢量量化标记)和连续变体(生成软标记),分别用在快速生成和高保真度生成。
HMA项目介绍
项目官网:https://liruiw.github.io/hma/
GitHub仓库:https://github.com/liruiw/HMA
HuggingFace模型库:https://huggingface.co/liruiw/hma-base-disc
arXiv技术论文:https://arxiv.org/pdf/2502.04296
在线体验Demo:https://huggingface.co/spaces/liruiw/hma
HMA能做什么?
实时视频模拟:快速生成机器人在不同环境中的动作视频,用在虚拟交互测试,验证策略效果,节省实际部署成本。
策略评估:作为高保真模拟器,评估机器人策略性能,预测策略在真实环境中的表现,辅助策略优化。
合成数据生成:生成大量合成数据,扩充训练数据集,提升策略泛化能力,尤其在数据稀缺时效果显著。
模仿学习:直接作为模仿策略,根据当前观测预测机器人动作,快速响应环境变化,提高任务执行效率。
长期规划与控制:HMA支持生成长序列的视频和动作预测,助力机器人进行长期规划和模型预测控制,提升复杂任务的完成率。
-
CHANGER是什么?一文让你看懂CHANGER的技术原理、主要功能、应用场景2025-04-05
-
Kiroku是什么?一文让你看懂Kiroku的技术原理、主要功能、应用场景2025-04-05
-
Vision Search Assistant是什么?一文让你看懂Vision Search Assistant的技术原理、主要功能、应用场景2025-04-05
-
MVDrag3D是什么?一文让你看懂MVDrag3D的技术原理、主要功能、应用场景2025-04-05
-
Chonkie是什么?一文让你看懂Chonkie的技术原理、主要功能、应用场景2025-04-05
-
MSQA是什么?一文让你看懂MSQA的技术原理、主要功能、应用场景2025-04-05

AI爱好者的一站式人工智能AI工具箱,累计收录全球10,000⁺好用的AI工具软件和网站,方便您更便捷的探索前沿的AI技术。本站持续更新好的AI应用,力争做全球排名前三的AI网址导航网站,欢迎您成为我们的一员。







