上一篇
AutoDev是什么?一文让你看懂AutoDev的技术原理、主要功能、应用场景Grok-1是什么?一文让你看懂Grok-1的技术原理、主要功能、应用场景
Grok-1概述简介
Grok-1 是由马斯克旗下的人工智能初创公司 xAI 开发的一款大型语言大模型,是一个混合专家(MoE)模型,拥有 3140 亿参数,使其成为目前参数量最大的开源大语言大模型。Grok-1 的开发和训练过程遵循了开源的原则,其权重和网络架构已经公开,基于Apache 2.0许可,允许用户自由地使用、修改和分发,用于个人和商业用途。
Grok-1的官网入口
官方文章介绍:https://x.ai/blog/grok-os
GitHub地址:https://github.com/xai-org/grok-1
Hugging Face地址:https://huggingface.co/xai-org/grok-1
模型权重下载:magnet:?xt=urn:btih:5f96d43576e3d386c9ba65b883210a393b68210e&tr=https%3A%2F%2Facademictorrents.com%2Fannounce.php&tr=udp%3A%2F%2Ftracker.coppersurfer.tk%3A6969&tr=udp%3A%2F%2Ftracker.opentrackr.org%3A1337%2Fannounce
Grok-1的模型信息
根据xAI官方的模型介绍(https://x.ai/model-card/),Grok-1的信息如下:
Grok-1的技术细节
基础模型和训练:Grok-1是基于大量文本数据进行训练的,没有针对任何具体任务进行微调。这意味着它是一个通用的语言大模型,可以应用于多种不同的自然语言处理任务。它的训练从头开始,使用JAX库和Rust语言组成的自定义训练堆栈。
参数数量:Grok-1拥有3140亿个参数,是目前参数量最大的开源大语言大模型。这些参数在给定token上的激活权重为25%,表明了模型的规模和复杂性。
混合专家模型(MoE):Grok-1采用了混合专家系统的设计,这是一种将多个专家网络(expert networks)结合起来的方法,以提高模型的效率和性能。在Grok-1中,每个token从8个专家中选择2个进行处理。
激活参数:Grok-1的激活参数数量为860亿,这比Llama-2的70B参数还要多,表明其在处理语言任务时的潜在能力。
嵌入和位置嵌入:Grok-1使用旋转嵌入而非固定位置嵌入,这是一种处理序列数据的方法,可以提高模型处理长文本的能力。Tokenizer词汇大小为131,072,类似于GPT-4,嵌入大小为6,144。
Transformer层:模型包含64个Transformer层,每层都包含一个解码器层,由多头注意力块和密集块组成。多头注意力块有48个头用于查询,8个头用于键/值(KV),KV大小为128。密集块(密集前馈块)的加宽因子为8,隐藏层大小为32,768。
量化:Grok-1还提供了一些权重的8bit量化内容,这有助于减少模型的存储和计算需求,使其更适合在资源有限的环境中运行。
运行要求:由于Grok-1是一个规模较大的模型(314B参数),因此需要有足够的GPU内存的机器才能运行。据估计,可能需要一台拥有628GB GPU内存的机器(每个参数2字节)。
-
CHANGER是什么?一文让你看懂CHANGER的技术原理、主要功能、应用场景2025-04-05
-
Kiroku是什么?一文让你看懂Kiroku的技术原理、主要功能、应用场景2025-04-05
-
Vision Search Assistant是什么?一文让你看懂Vision Search Assistant的技术原理、主要功能、应用场景2025-04-05
-
MVDrag3D是什么?一文让你看懂MVDrag3D的技术原理、主要功能、应用场景2025-04-05
-
Chonkie是什么?一文让你看懂Chonkie的技术原理、主要功能、应用场景2025-04-05
-
MSQA是什么?一文让你看懂MSQA的技术原理、主要功能、应用场景2025-04-05

AI爱好者的一站式人工智能AI工具箱,累计收录全球10,000⁺好用的AI工具软件和网站,方便您更便捷的探索前沿的AI技术。本站持续更新好的AI应用,力争做全球排名前三的AI网址导航网站,欢迎您成为我们的一员。







