OpenELM是什么?一文让你看懂OpenELM的技术原理、主要功能、应用场景

来源:卓商AI
发布时间:2025-04-05

OpenELM概述简介

OpenELM是Apple苹果公司最新推出的系列高效开源的语言大模型,包括OpenELM-270M、OpenELM-450M、OpenELM-1_1B和OpenELM-3B不同参数规模的版本(分为预训练版和指令微调版)。该大模型利用层间缩放策略在Transformer模型的每一层中进行参数的非均匀分配,以此提高模型的准确度和效率。该模型在公共数据集上进行了预训练,并且在多个自然语言处理任务上展现出了优异的性能。OpenELM的代码、预训练模型权重以及训练和评估流程全部开放,旨在促进开放研究和社区的进一步发展。

OpenELM的基本信息

参数规模:OpenELM总共有八个模型,其中四个是预训练的,四个是指令微调的,涵盖了 2.7 亿到 30 亿个参数之间的不同参数规模(270M、450M、1.1B和3B)。

技术架构:OpenELM采用了基于Transformer的架构,使用了层间缩放(layer-wise scaling)策略,通过调整注意力头数和前馈网络(FFN)的乘数来实现参数的非均匀分配。该模型采用了分组查询注意力(Grouped Query Attention, GQA)代替多头注意力(Multi-Head Attention, MHA),使用SwiGLU激活函数代替传统的ReLU,以及RMSNorm作为归一化层。

预训练数据:OpenELM使用了多个公共数据集进行预训练,包括RefinedWeb、deduplicated PILE、RedPajama的子集和Dolma v1.6的子集,总计约1.8万亿个token。

开源许可:OpenELM的代码、预训练模型权重和训练指南都是在开放源代码许可证下发布的。此外,苹果还发布了将模型转换为 MLX 库的代码,从而在苹果设备上进行推理和微调。

OpenELM的官网入口

arXiv研究论文:https://arxiv.org/abs/2404.14619

GitHub模型权重和训练配置:https://github.com/apple/corenet

指令微调版模型Hugging Face地址:https://huggingface.co/collections/apple/openelm-instruct-models-6619ad295d7ae9f868b759ca

预训练版模型Hugging Face地址:https://huggingface.co/collections/apple/openelm-pretrained-models-6619ac6ca12a10bd0d0df89e

OpenELM的技术架构

Transformer架构:OpenELM采用了仅解码器(decoder-only)的Transformer模型架构,这是一种在自然语言处理中广泛使用的架构,特别适用于处理序列数据。

层间缩放(Layer-wise Scaling):OpenELM通过层间缩放技术有效地在模型的每一层分配参数。这意味着模型的早期层(接近输入端)使用较小的注意力维度和前馈网络维度,而接近输出端的层则逐渐增加这些维度的大小。

分组查询注意力(Grouped Query Attention, GQA):OpenELM使用了GQA代替传统的多头注意力(Multi-Head Attention, MHA)。GQA是一种注意力机制的变体,旨在提高模型处理长距离依赖的能力。

RMSNorm归一化:OpenELM使用了RMSNorm作为其归一化层,一种有助于稳定训练过程的技术。

SwiGLU激活函数:在前馈网络(Feed Forward Network, FFN)中,OpenELM使用了SwiGLU激活函数,一种门控激活函数,有助于模型捕捉复杂的模式。

RoPE位置编码:为了编码位置信息,OpenELM使用了旋转位置编码(Rotary Positional Embedding, RoPE),一种可以处理序列中元素顺序的编码方式。

Flash注意力:在计算缩放点积注意力(scaled dot-product attention)时,OpenELM使用了Flash注意力,这是一种快速且内存高效的注意力计算方法。

OpenELM的性能表现

开发人员将OpenELM与PyThia、Cerebras-GPT、TinyLlama、OpenLM、MobiLlama和OLMo等模型进行了比较。在相似的模型大小下,OpenELM在ARC、BoolQ、HellaSwag、PIQA、SciQ和WinoGrande等主流的任务测试中的多数任务上展现出了更高的准确度。尤其是,与OLMo模型相比,OpenELM在参数数量和预训练数据更少的情况下,准确率依然更高。

© 版权声明:本站所有原创文章版权均归卓商AI工具集及原创作者所有,未经允许任何个人、媒体、网站不得转载或以其他方式抄袭本站任何文章。
卓商AI
卓商AI

AI爱好者的一站式人工智能AI工具箱,累计收录全球10,000⁺好用的AI工具软件和网站,方便您更便捷的探索前沿的AI技术。本站持续更新好的AI应用,力争做全球排名前三的AI网址导航网站,欢迎您成为我们的一员。

猜你喜欢
  • explorify
    explorify 介绍AI-Power的旅行推荐应用程序Explorify。只需输入您的目的地和偏好,然后让探索高级技术完成其余的技术即可。轻松发现最佳访问的地方,并充...
  • IntrvuAI
    IntrvuAI IntrvuAI是一个在线平台,使用人工智能技术帮助用户准备技术面试。它提供了模拟面试、个性化反馈和简历评估服务,帮助用户提高面试技巧,增强自信心,并...
  • InterviewnHQ
    InterviewnHQ InterviewnHQ是一款AI驱动的系统设计面试模拟工具,通过提供定制化的面试准备和即时反馈,帮助软件开发人员提升他们的职业生涯。它可以针对初级开...
  • Dover Autopilot
    Dover Autopilot Dover | 招聘自动驾驶是一个招聘编排平台,它能够自动连接和联系优秀的人才,使得外联招聘变得轻松无比。通过上传职位描述链接,Dover能够根据10...
  • AsrTools
    AsrTools AsrTools是一款基于人工智能技术的语音转文字工具,它通过调用大厂的ASR服务接口,实现了无需GPU和复杂配置的高效语音识别功能。该工具支持批量处...
  • resume genius
    resume genius 简历天才是快速而轻松地创建专业简历的理想工具。利用AI技术,让Genius简历制造商在短短几分钟内帮助您撰写赢得工作的简历。...
  • AI Dev
    AI Dev AI Dev是一款专注于编程领域的工具,通过自动化处理重复性开发任务,让开发者能够将更多精力投入到创造性工作中。这种技术的重要性在于提高开发效率,减少...
  • SlaxNote
    SlaxNote SlaxNote是一款能将语音转换为文字并润色成文章的工具,使用Whisper技术实时转换语音为文字,结合GPT 4.0技术进行文章润色,具有即时性和...